Java多线程并发编程 — 互斥锁ReentrantLock

Java 中的锁通常分为两种:

  • 通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字
  • java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁)。

本篇主要介绍 ReentrantLock(互斥锁)。


ReentrantLock(互斥锁)

ReentrantLock 互斥锁,在同一时间只能被一个线程所占有,在被持有后并未释放之前,其他线程若想获得该锁只能等待或放弃。

ReentrantLock 互斥锁是可重入锁,即某一线程可多次获得该锁。

公平锁 and 非公平锁

1
2
3
4
5
6
7
    public ReentrantLock() {
        sync = new NonfairSync();
    }

    public ReentrantLock(boolean fair) {
        sync = fair ? new FairSync() : new NonfairSync();
    }

由 ReentrantLock 的构造函数可见,在实例化 ReentrantLock 的时候我们可以选择实例化一个公平锁或非公平锁,而默认会构造一个非公平锁。

公平锁与非公平锁区别在于竞争锁时的有序与否。公平锁可确保有序性(FIFO 队列),非公平锁不能确保有序性(即使也有 FIFO 队列)。

然而,公平是要付出代价的,公平锁比非公平锁要耗性能,所以在非必须确保公平的条件下,一般使用非公平锁可提高吞吐率。所以 ReentrantLock 默认的构造函数也是“不公平”的。

一般使用

DEMO1:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
public class Test {

    private static class Counter {

        private ReentrantLock mReentrantLock = new ReentrantLock();

        public void count() {
            mReentrantLock.lock();
            try {
                for (int i = 0; i < 6; i++) {
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                }
            } finally {
	            // 必须在 finally 释放锁
                mReentrantLock.unlock();
            }
        }
    }

    private static class MyThread extends Thread {

        private Counter mCounter;

        public MyThread(Counter counter) {
            mCounter = counter;
        }

        @Override
        public void run() {
            super.run();
            mCounter.count();
        }
    }

    public static void main(String[] var0) {
        Counter counter = new Counter();
        // 注:myThread1 和 myThread2 是调用同一个对象 counter
        MyThread myThread1 = new MyThread(counter);
        MyThread myThread2 = new MyThread(counter);
        myThread1.start();
        myThread2.start();
    }
}

DEMO1 输出:

1
2
3
4
5
6
7
8
9
10
11
12
Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1, i = 0
Thread-1, i = 1
Thread-1, i = 2
Thread-1, i = 3
Thread-1, i = 4
Thread-1, i = 5

DEMO1 仅使用了 ReentrantLock 的 lock 和 unlock 来提现一般锁的特性,确保线程的有序执行。此种场景 synchronized 也适用。

锁的作用域

DEMO2:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
public class Test {

    private static class Counter {

        private ReentrantLock mReentrantLock = new ReentrantLock();

        public void count() {
            for (int i = 0; i < 6; i++) {
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                try{
                    Thread.sleep(100);
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
	                // 必须在 finally 释放锁
                    mReentrantLock.unlock();
                }
            }
        }

        public void doOtherThing(){
            for (int i = 0; i < 6; i++) {
                // 模拟耗时,突出线程是否阻塞
                try {
                    Thread.sleep(100);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
            }
        }
    }
    
    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        }).start();
    }
}

DEMO2 输出:

1
2
3
4
5
6
7
8
9
10
11
12
Thread-0, i = 0
Thread-1 doOtherThing, i = 0
Thread-0, i = 1
Thread-1 doOtherThing, i = 1
Thread-0, i = 2
Thread-1 doOtherThing, i = 2
Thread-0, i = 3
Thread-1 doOtherThing, i = 3
Thread-0, i = 4
Thread-1 doOtherThing, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 5

DEMO3:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
public class Test {

    private static class Counter {

        private ReentrantLock mReentrantLock = new ReentrantLock();

        public void count() {
            for (int i = 0; i < 6; i++) {
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                try{
                    Thread.sleep(100);
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                } finally {
                    // 必须在 finally 释放锁
                    mReentrantLock.unlock();
                }
            }
        }

        public void doOtherThing(){
            mReentrantLock.lock();
            try{
                for (int i = 0; i < 6; i++) {
                    // 模拟耗时,突出线程是否阻塞
                    try {
                        Thread.sleep(100);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
                }
            }finally {
                mReentrantLock.unlock();
            }

        }
    }

    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        }).start();
    }
}

DEMO3 输出:

1
2
3
4
5
6
7
8
9
10
11
12
Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 0
Thread-1 doOtherThing, i = 1
Thread-1 doOtherThing, i = 2
Thread-1 doOtherThing, i = 3
Thread-1 doOtherThing, i = 4
Thread-1 doOtherThing, i = 5

结合 DEMO2 和 DEMO3 输出可见,锁的作用域在于 mReentrantLock,因为所来自于 mReentrantLock。

可终止等待

DEMO4:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
public class Test {

    static final int TIMEOUT = 300;

    private static class Counter {

        private ReentrantLock mReentrantLock = new ReentrantLock();

        public void count() {
            try{
                //lock() 不可中断
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                for (int i = 0; i < 6; i++) {
                    long startTime = System.currentTimeMillis();
                    while (true) {
                        if (System.currentTimeMillis() - startTime > 100)
                            break;
                    }
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                }
            } finally {
                // 必须在 finally 释放锁
                mReentrantLock.unlock();
            }
        }

        public void doOtherThing(){
            try{
                //lockInterruptibly() 可中断,若线程没有中断,则获取锁
                mReentrantLock.lockInterruptibly();
                for (int i = 0; i < 6; i++) {
                    // 模拟耗时,突出线程是否阻塞
                    long startTime = System.currentTimeMillis();
                    while (true) {
                        if (System.currentTimeMillis() - startTime > 100)
                            break;
                    }
                    System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
                }
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + " 中断 ");
            }finally {
                // 若当前线程持有锁,则释放
                if(mReentrantLock.isHeldByCurrentThread()){
                    mReentrantLock.unlock();
                }
            }
        }
    }

    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        });
        thread2.start();
        long start = System.currentTimeMillis();
        while (true){
            if (System.currentTimeMillis() - start > TIMEOUT) {
                // 若线程还在运行,尝试中断
                if(thread2.isAlive()){
                    System.out.println(" 不等了,尝试中断 ");
                    thread2.interrupt();
                }
                break;
            }
        }
    }
}

DEMO4 输出:

1
2
3
4
5
6
7
8
Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
不等了,尝试中断
Thread-1 中断
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5

线程 thread2 等待 300ms 后 timeout,中断等待成功。

若把 TIMEOUT 改成 3000ms,输出结果:(正常运行)

1
2
3
4
5
6
7
8
9
10
11
12
Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5
Thread-1 doOtherThing, i = 0
Thread-1 doOtherThing, i = 1
Thread-1 doOtherThing, i = 2
Thread-1 doOtherThing, i = 3
Thread-1 doOtherThing, i = 4
Thread-1 doOtherThing, i = 5

定时锁

DEMO5:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
public class Test {

    static final int TIMEOUT = 3000;

    private static class Counter {

        private ReentrantLock mReentrantLock = new ReentrantLock();

        public void count() {
            try{
                //lock() 不可中断
                mReentrantLock.lock();
                // 模拟耗时,突出线程是否阻塞
                for (int i = 0; i < 6; i++) {
                    long startTime = System.currentTimeMillis();
                    while (true) {
                        if (System.currentTimeMillis() - startTime > 100)
                            break;
                    }
                    System.out.println(Thread.currentThread().getName() + ", i = " + i);
                }
            } finally {
                // 必须在 finally 释放锁
                mReentrantLock.unlock();
            }
        }

        public void doOtherThing(){
            try{
                //tryLock(long timeout, TimeUnit unit) 尝试获得锁
                boolean isLock = mReentrantLock.tryLock(300, TimeUnit.MILLISECONDS);
                System.out.println(Thread.currentThread().getName() + " isLock:" + isLock);
                if(isLock){
                    for (int i = 0; i < 6; i++) {
                        // 模拟耗时,突出线程是否阻塞
                        long startTime = System.currentTimeMillis();
                        while (true) {
                            if (System.currentTimeMillis() - startTime > 100)
                                break;
                        }
                        System.out.println(Thread.currentThread().getName() + " doOtherThing, i = " + i);
                    }
                }else{
                    System.out.println(Thread.currentThread().getName() + " timeout");
                }
            } catch (InterruptedException e) {
                System.out.println(Thread.currentThread().getName() + " 中断 ");
            }finally {
                // 若当前线程持有锁,则释放
                if(mReentrantLock.isHeldByCurrentThread()){
                    mReentrantLock.unlock();
                }
            }
        }
    }

    public static void main(String[] var0) {
        final Counter counter = new Counter();
        new Thread(new Runnable() {
            @Override
            public void run() {
                counter.count();
            }
        }).start();
        Thread thread2 = new Thread(new Runnable() {
            @Override
            public void run() {
                counter.doOtherThing();
            }
        });
        thread2.start();
    }
}

DEMO5 输出:

1
2
3
4
5
6
7
8
Thread-0, i = 0
Thread-0, i = 1
Thread-0, i = 2
Thread-1 isLock:false
Thread-1 timeout
Thread-0, i = 3
Thread-0, i = 4
Thread-0, i = 5

tryLock() 尝试获得锁,tryLock(long timeout, TimeUnit unit) 在给定的 timeout 时间内尝试获得锁,若超时,则不带锁往下走,所以必须加以判断。

ReentrantLock or synchronized

ReentrantLock 、synchronized 之间如何选择?

ReentrantLock 在性能上 比 synchronized 更胜一筹。

ReentrantLock 需格外小心,因为需要显式释放锁,lock() 后记得 unlock(),而且必须在 finally 里面,否则容易造成死锁。
synchronized 隐式自动释放锁,使用方便。

ReentrantLock 扩展性好,可中断锁,定时锁,自由控制。
synchronized 一但进入阻塞等待,则无法中断等待。